Explicit upper bounds for the spectral distance of two trace class operators

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPLICIT UPPER BOUNDS FOR THE AVERAGE ORDER OF dn(m) AND APPLICATION TO CLASS NUMBER

In this paper, we prove some explicit upper bounds for the average order of the generalized divisor function, and, according to an idea of Lenstra, we use them to obtain bounds for the class number of number fields.

متن کامل

Trace class operators and Hilbert-Schmidt operators

If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...

متن کامل

Explicit and Almost Explicit Spectral Calculations for Diffusion Operators

The diffusion operator HD = − 1 2 d dx a d dx − b d dx = − 1 2 exp(−2B) d dx a exp(2B) d dx , where B(x) = R x 0 b a (y)dy, defined either on R = (0,∞) with the Dirichlet boundary condition at x = 0, or on R, can be realized as a self-adjoint operator with respect to the density exp(2Q(x))dx. The operator is unitarily equivalent to the Schrödinger-type operator HS = − 1 2 d dx a d dx + Vb,a, wh...

متن کامل

Upper bounds for Stein-type operators

We present sharp bounds on the supremum norm of DjSh for j ≥ 2, where D is the differential operator and S the Stein operator for the standard normal distribution. The same method is used to give analogous bounds for the exponential, Poisson and geometric distributions, with D replaced by the forward difference operator in the discrete case. We also discuss applications of these bounds to the c...

متن کامل

Sharp Upper bounds for Multiplicative Version of Degree Distance and Multiplicative Version of Gutman Index of Some Products of Graphs

In $1994,$ degree distance  of a graph was introduced by Dobrynin, Kochetova and Gutman. And Gutman proposed the Gutman index of a graph in $1994.$ In this paper, we introduce the concepts of  multiplicative version of degree distance and the multiplicative version of Gutman index of a graph. We find the sharp upper bound for the  multiplicative version of degree distance and multiplicative ver...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2015

ISSN: 0024-3795

DOI: 10.1016/j.laa.2014.10.008